MULTIPROBE PRESSURE TESTING

AND RESERVOIR CHARACTERIZATION -

PRESSURE TRANSIENT, CONTAMINATION,

LIQUID AND GAS PUMPING ANALYSIS

 

 

by

 

Wilson C. Chin, Ph.D., M.I.T.

Stratamagnetic Software, LLC

Beijing and Houston

 

 

Table of Contents

 

Preface . . . xv

Acknowledgements . . . xviii

Part I. Fundamental Concepts and Generalizations

1.     Fluid Sampling, Pressure Transient and Contamination

Analysis . . 1

1.1 Formation testing background . 1

1.2 Conventional formation testing concepts . 5

1.3 Ideal source model summary . 10

1.3.1 Forward or direct models without

supercharge . . 11

1.3.1.1 FT-00, general model, exact, closed form

analytical solution . 11

1.3.1.2 FT-06, general model, numerical finite

difference scheme . 11

1.3.1.3 FT-07, general model, extension of

FT-06 . . 11

1.3.2 Inverse or "indirect" models without

supercharge . . 12

1.3.2.1 Single-probe, effective spherical

permeability . . 12

1.3.2.2 FT-01, Anisotropic permeability,

determines kh and kv . . 12

1.3.2.3       FT-02, Anisotropic permeability,

determines kh and kv . 12

1.3.2.4 FT-PTA-DDBU, for effective spherical

permeability in low mobility

formations . 12

1.3.2.5 FT-PTA-DDBU extensions . 12

1.3.2.6 FT-PTA-FastForward for supercharge

model in transient analysis . 13

1.3.2.7 Phase delay, for permeability in isotropic

media. . 13

1.3.2.8 Phase delay and drawdown method in

anisotropic media . . . 13

1.3.3 Advanced methods . . 13

1.3.3.1 Forward and inverse models with

supercharge . 13

1.3.3.2 Multiple drawdown-buildup inverse

model without supercharge . 14

1.3.3.3 Miscible contamination simulator. . 14

1.4 Modern three-dimensional sampling tools 14

1.4.1 Background physics . . 14

1.4.2 Simulator specifications . . 15

1.5 Simulator design objectives . 18

1.6 Supercharging, invasion, mudcake effects, overbalanced

and underbalanced drilling. . 19

1.7 References . . 21

2. Physical Concepts and Numerical Approaches . 22

2.1 Blind spot at the 180 deg probe profound 3D

effects . . 22

2.2 Unbalanced doublet flow an exact analytical

solution .. . . 24

2.3 Numerical modeling simply explained subtleties in

cylindrical annular domains . 27

2.3.1        Basic finite differences . . 27

2.3.2        Challenges in circular cylindrical

coordinates . . . 29

2.3.3        Modeling in circular ring domains further

explained . . . 34

2.4 Implementation details and boundary

conditions . . . 38

2.4.1 Periodicity Analytical review and motivating

ideas . . . 38

2.4.2 Periodicity Numerical extensions on annular

domains . . . 39

2.4.2.1 First-order accurate periodicity

model . . . . 40

2.4.2.2 Second-order periodicity

modeling . . . 41

2.4.3 Meshing constraints . . . 41

2.4.4 Probe or nozzle geometry modeling . 42

2.4.5 Computing speed issues . . 43

2.4.6 Pressure numerical engine . . 44

2.4.7 Contamination numerical engine . 47

2.4.7.1  Convective-diffusion model

for contamination . . . . 47

2.4.7.2 Contamination formulation and

and numerical solution . 49

2.4.8 Supercharge, invasion and mudcake

growth . . . 52

2.5 References . . . 53


3. Multiprobe Model Formulations and Validations 54

Table 3-1. Formation testing simulator systems available

available . . 55

3.1 Basic multiprobe flow modules summarized . 56

3.1.1 System 1 solution using mprobe(dual) . 56

3.1.2 System 2 solution using mprobe(quad) . . 60

3.1.3 System 3 solution using mprobe(focus) 62

3.1.4 System 4 solution using

mprobe(contam) . 65

3.1.5 System 5 solution using mprobe(triplet) . . 67

3.1.6 System 6 solution using mprobe . . 68

3.1.7 System 7 solution using

mprobe(3-contam) . 70

3.1.8 System 8 solution using mprobe(3-gas) . . 72

3.1.9 System 9 solution using mprobe(4-gas) . . 73

3.1.10 Additional multiprobe flow modules

summarized . . . . 75

3.2 Geometric factor basics . . . 77

3.3 Geometric factor significance . . . . 79

3.3.1 Sample GF procedure . . 79

3.3.2 Solution differences explained

GF significance . 80

3.4 Mesh system details . . . 85

3.4.1 Angular mesh for mprobe(dual) 85

3.4.2 Angular mesh for mprobe(triplet), mprobe

and mprobe(3-gas) . . 87

3.4.3 Angular mesh for four-probe array,

mprobe(quad) and mprobe(4-gas) 89

3.4.4 Mesh for central four-probe array with two side

arrays each having four-probes, for both mprobe(focus) and mprobe(contam) . 91

3.5 References . . 93

Part II. Four-Probe Algorithms

4. Single-Phase, Four-Probe Flows Conventional, Overbalanced and Underbalanced Drilling

Applications . . . 94

4.1 Modeling strategies re-emphasized . . 96

4.2 Comprehensive calculated examples . 97

Example 4-1. Basic output, transient and rapid steady flow analyses for round or oval nozzles (all four pumping identically, impermeable sandface) . . 99

Example 4-2. Basic output, transient flow results for slot nozzles (all four pumping identically, impermeable sandface) . . . 106

Example 4-3. Transient flow results for mixed round and slot nozzle combinations with different pump schedules (impermeable sandface) . . . 108

Example 4-4. Transient flow results for mixed withdrawal and injection flow rates for round and slot nozzle combinations (impermeable sandface) 110

Example 4-5. Transient drawdown-buildup, four slot nozzles in overbalanced (supercharged) drilling 113

Example 4-6. Transient drawdown-buildup, four slot nozzles in underbalanced (undercharged) drilling 115

Example 4-7. Simulations in multiprobe pumping with mixed nozzles (impermeable sandface, twelve

nozzles) . 117

Example 4-8. Multiprobe pumping with mixed nozzles in overbalanced (supercharged) and underbalanced (undercharged) drilling . 125

4.3 References 128


5. Convective-Diffusion, Four-Probe Model for Pressure and Contamination . . 129

5.1 Pressure and contamination simulations . 132

Example 5-1. Basic supercharging physics and mudcake flow properties . . 134

Example 5-2. Contamination behavior, dependence on reservoir fluid diffusion . . 143

Example 5-3. Mudcake sealing, model options and contamination recovery 146

Example 5-4. Extremely high supercharge pressure 149

Example 5-5. Main probe array, supercharge runs with and without focusing probe rows (non-packer tool) . 151

Example 5-6. Main probe array, supercharge runs with and without focusing probe rows (packer tool) . . 158

Example 5-7. Mud viscosity effects . . 167

Example 5-8. Comparative drawdown-buildup runs, no invasion versus contamination with main probes only, and then contamination with main and focused probe rows . . . 173

Example 5-9. Effectiveness of focusing probe rows as

function of mud filtrate and reservoir oil diffusion

coefficient . . . 183

5.2 Closing remarks . 195

5.3 References. . . 196


Part III. Triple-Probe Azimuthal Algorithms, Axial Multiprobe Array Formation Testing, General Nonlinear Gas Pumping, Advanced Software and Inverse Methods, Geothermal Issues

6.     Single-Phase, Triple-Probe Flows Conventional, Overbalanced and Underbalanced Drilling

Applications . . 197

6.1 Drawdown for Round and Slot Nozzles With and Without Mud Filtrate Migration Through the Sandface. 201

Example 6-1. Simple drawdown, round nozzle, no invasion . 201

Example 6-2. Simple drawdown, round nozzle, invasion with supercharging, 200 psi overbalance 210

Example 6-3. Simple drawdown, round nozzle, invasion with strong supercharging, 2,000 psi overbalance . . 214

Example 6-4. Simple drawdown, round nozzle, underbalanced drilling, 100 psi underbalance . 216

Example 6-5. Simple drawdown, slot nozzle, no

invasion . . 218

Example 6-6. Simple drawdown, three pumping slot nozzles, no invasion 223

6.2 Highly Transient Applications, Drawdown and Buildup,

Multiple Round or Slot Nozzles . 227

Example 6-7. Simple drawdown and buildup, single round nozzle, no invasion . . . 227

Example 6-8. Three round nozzles executing drawdown and buildup simultaneously and independently, no invasion . . . 232

Example 6-9. Two round nozzles, one withdrawing fluid, the second simultaneously injecting, no invasion . . 237

Example 6-10. Invasion or supercharge characterization in transient problems . 241

 

6.3 Special Topics . . 245

Example 6-11. A complicated simulation, effect of pore pressure in output displays . 245

Example 6-12. Batch processing capabilities 250

Example 6-13. Spherical flow evaluation and geometric factors . . . 258

Example 6-14. Pressure behavior at permeability extremes . . . 261

Example 6-15. Comparing problems with and without supercharge . . . . 264

Example 6-16. Suppressing dissolved gas release . . 267

Bubble point considerations . . 267

Run 1. Undesirable dissolved gas release 268

Run 2. Dissolved gas remains in solution 273

Example 6-17. Steady flow convergence acceleration for

interpretation applications Big Data inverse applications . . . . 278

Example 6-18. Heterogeneity and dip detection using multiple probe firings . . 286

Example 6-19. Triple-probe tools with different nozzle geometries . . 292

Example 6-20. Flows with mixed nozzle designs and different pumping schedules upgraded menu for

independently controlled probes with different flow rates, pumping schedules and geometric factors 296

Run 1. All round nozzles with staggered

flow rates . . 296

Run 2. All slotted nozzles with staggered

flow rates . . . 298

Run 3. All slotted nozzles with identical flow rates . . 299

Run 4. Slot, round, slot combination with identical flow rates . . 302

Run 5. Round, slot, round combination

with identical flow rates 303

6.4 References . 305

7. Multiphase Triple-Probe Flows Coupled Models for

Pressure and Contamination . . 306

7.1 Pressure and contamination simulations . 307

Example 7-1. Four and triple-probe runs, simulator

calibration, flow validation and geometric factors . 307

Example 7-2. Effects of mud viscosity, supercharge invasion, and filter cake sealing on cleaning

recovery . . . 311

Example 7-3. Role of diffusion in contamination 319

Example 7-4. Drawdown-buildup tests in the presence

of supercharged invasion and contamination (assuming

equal mud and oil viscosities of 1 cp) . 324

Example 7-5. Drawdown-buildup tests in the presence

of supercharged invasion and contamination (mud viscosity greatly exceeds oil viscosity) . . 328

Example 7-6. Pressure-contamination modeling with

mixed geometry nozzle operations . 332

Example 7-7. Pressure-contamination simulations with

mixed nozzles and pumping schedules . . 337

Example 7-8. Modeling anisotropic formations . 342

7.2 References 348

 

 

 


8. Convergence Acceleration, Batch Processing and Inverse

Methods for Permeability Prediction (Inverse Problem Focus and Definition) . 349

8.1 Convergence acceleration 351

8.1.1 Interpretation applications . . 352

8.1.2 Validating convergence accelerations 353

8.1.3 Big data inverse applications . . 358

8.2 Batch processing . . . 359

8.2.1 Display software and pressure analysis

options . . 359

8.2.2 General transient 3D simulator in batch

mode . . . 363

8.2.3 Rapid steady 3D simulator in batch mode . 367

A representative example . . 367

Running the batch steady solver . . 371

Higher permeability density runs . 374

8.3 Inverse methods for permeability prediction . 379

8.3.1 Azimuthal inverse problem . . . 379

Steady flow forward calculations . 381

Limited (kh,kv) range example . 381

Inverse permeability predictions . . 391

Algorithm analysis . . 391

Wider (kh,kv) permeability example .. . 397

Inverse method recapitulation . 401

Data integrity in big data

implementation . . 404

Azimuthal inverse strategies . 406

8.3.2 Axial inverse problem for any dip angle . 407

8.3.2.1 Dual probe anisotropy inverse analysis,

existing source model simulators . 407

8.3.2.2 Supercharging Effects of nonuniform

initial pressure . . 417

Conventional zero supercharge

model . . . . 418

Supercharge Fast Forward solver . 419

8.3.2.3 Multiprobe DOI, inverse and barrier

analysis . 425

8.3.3 Combined forward and inverse user interface 433

Run 1. Center pumping probe, two observation

probes with a first viscosity guess 433

Run 2. Center pumping probe, two observation

probes with a second viscosity guess . 448

Run 3. Three pumping probes in drawdown

mode . 450

Run 4. Two pumping probes in drawdown mode

Closing remarks 459

8.4 References . . 461

9.      Gas Pumping with Multiprobe Tools . 463

9.1 Background and Motivation 463

Table 9-1. Ratios of Specific Heats . . . 465

Triple-probe nonlinear gas simulator in

mprobe(3-gas) . . . 467

Example 9-1. Impermeable sandface, drawdown

only . . 467

Example 9-2. Impermeable sandface,

drawdown-buildup . 469

Example 9-3. Zero or negative pressure, error

detection . . . 470

Example 9-4. Effects of high and low mud pressure in the

borehole in drawdown-buildup applications . 472

 

 

 

 

Four-probe nonlinear gas simulator in

mprobe(4-gas) . . 475

Example 9-5. Gas expansion process effects . 475

Example 9-6. Heterogeneity detection using staggered azimuthal probe firings . . 478

Example 9-7. Controlling regions of dependence . 481

Example 9-8. Drawdowns with mixed nozzle

geometries . . 484

9.2 Closing Remarks . . . 488

9.3 References . . . 489

10.  Axial Multiprobe, Reservoir Characterization and Geothermal Issues . 490

10.1 Background and Motivation . 491

10.2 Review of ideal source axial probe methods . 494

10.3 Example axial pressure vs time versus space probe solutions . 496

Example 10-1. Isotropic 1 md, with flowline

volume of 0 cc . . 497

Example 10-2. Isotropic 1 md, with flowline

volume of 100 cc . . 499

Example 10-3. Isotropic 1 md, with flowline

volume of 200 cc . . 500

Example 10-4. Isotropic 1 md, with flowline

volume of 300 cc . . 501

Example 10-5. Anisotropic kh = 1 md, kv = 0.1 md,

flowline volume of 100 cc . 502

10.4 Reservoir characterization perspectives, geotechnical

and geothermal issues . 503

10.5 References . . 512


Cumulative References 514

Index . . 530

About the Author (with Software Summary) . . 543